The Complexity of Obtaining a Distance-Balanced Graph
نویسندگان
چکیده
منابع مشابه
The Complexity of Obtaining a Distance-Balanced Graph
An unweighted, connected graph is distance-balanced (also called self-median) if there exists a number d such that, for any vertex v, the sum of the distances from v to all other vertices is d. An unweighted connected graph is strongly distancebalanced (also called distance-degree regular) if there exist numbers d1, d2, d3, . . . such that, for any vertex v, there are precisely dk vertices at d...
متن کاملStrongly distance-balanced graphs and graph products1
A graph G is strongly distance-balanced if for every edge uv of G and every i ≥ 0 the number of vertices x with d(x, u) = d(x, v)−1 = i equals the number of vertices y with d(y, v) = d(y, u) − 1 = i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distancebalanced. It is also proved that connected components of the direct pro...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولRemarks on Distance-Balanced Graphs
Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. In this paper, we study the conditions under which some graph operations produce a distance-balanced graph.
متن کاملDifferent-Distance Sets in a Graph
A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2011
ISSN: 1077-8926
DOI: 10.37236/536